ГЛАВНАЯ > Эврика! Мир и наука

Ультразвук борется с раком

12:12 05.12.2016 •

Медики давно ищут способ проводить операции внутри человеческого тела без непосредственного хирургического вмешательства, чтобы пациент обошёлся минимумом повреждений.

В последние десять лет для таких операций научились использовать ультразвук. Если перед нами стоит задача, к примеру, избавиться от рака, то ультразвуковое излучение большой мощности, сфокусированное в нужной точке, нагревает опухоль и убивает раковые клетки. Сейчас ультразвук применяют против опухолей предстательной железы, почек, печени, молочной железы и даже мозга.

Наибольший практический интерес здесь представляют так называемые нелинейные звуковые волны, форма которых отличается от гармонической (синусоидальной). Наглядный пример тех и других можно увидеть на море: вдали от берега волны почти гармонические, они просто покачивают пловца, у берега же волна нелинейная, и при достаточной силе обрушивающийся на берег вал может сбить человека с ног и разрушить береговые сооружения. Преимущество ультразвуковых нелинейных волн в том, что возникающие в них ударные фронты нагревают ткани значительно быстрее; более того, они способны порождать совершенно новые биологические эффекты.

Однако для создания волны с нужным ударным фронтом необходим соответствующий излучатель. Чтобы определить, какие у него должны быть характеристики, нужно решить сложную задачу со множеством взаимосвязанных параметров; кроме того, здесь также необходимо разобраться, что собой представляют нелинейные ультразвуковые поля в биологической ткани, какими математическими моделями их нужно описывать.

Всё это удалось проделать специалистам-акустикам из Московского государственного университета (МГУ), которые совместно с коллегами и Университета штата Вашингтон (Сиэтл).

Исследователи показали, что основной параметр у такого излучателя – это угол схождения звуковой волны, показывающий, насколько сильно должен быть сфокусирован ультразвук. Чем больше угол схождения, тем больше амплитуда ударного фронта в фокусе. То, что такая зависимость существует, известно давно, но сейчас впервые удалось оценить её количественно. Например, если в фокусе нужно добиться амплитуды в 100 мегапаскалей (что в 1000 раз больше атмосферного давления), то потребуется излучатель с углом схождения в 60 градусов.

Другой результат связан с механическим разрушением биологических тканей с помощью все того же ультразвука. Дело в том, что, нагревая опухоль до высокой температуры, можно повредить окружающие здоровые ткани, в которые распространяется тепло от точки нагрева. Кроме того, за процессом сложно наблюдать – УЗИ здесь не подходит, и потому приходится применять дорогостоящие магнитно-резонансные томографы.

Авторы работы нашли выход, предложив способ быстро «вскипячивать» биоткань в очень небольшой области. Для этого нужно использовать короткие ультразвуковые импульсы длительностью всего около миллисекунды. При их распространении за счет нелинейных эффектов в области диаметром около 0,1 мм и длиной 1 мм вблизи фокуса образуются ударные фронты, из-за которых ткань нагревается и взрывным образом вскипает, вырастая в пузырь миллиметрового размера.

Пузырь увеличивается настолько быстро, что перекрывает путь ультразвуковому излучению ещё до окончания импульса. Таким образом, «хвост» импульса падает уже не на исходную биоткань, а на границу пузыря, разделяющую ткань и газ.

Одновременно возникает эффект «акустического фонтана» – когда из поверхности жидкости при фокусировке на ней ультразвука поднимается струя. На «акустический фонтан» накладывается эффект ультразвукового распыления, в результате чего ткань разрывается на частицы микронного размера, которые выбрасываются внутрь пузыря, образуя в его центре однородную массу. И, что немаловажно, за разрушением ткани можно следить с помощью простого УЗИ.

 

По материалам: (https://www.nkj.ru) 

Читайте другие материалы журнала «Международная жизнь» на нашем канале Яндекс.Дзен.

Подписывайтесь на наш Telegram – канал: https://t.me/interaffairs

Версия для печати